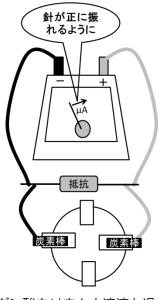
実験 19 酸化剤と還元剤の反応と電子の流れ~酸化還元反応~

<目的>代表的な酸化剤と還元剤の反応を観察しよう。また、電子の流れを調べて、酸化還元反応が電子の授受であることを確かめよう。


<準備>

- [器具] 24 穴セルプレートのふた, ラップ, ろ紙, マイクロアンペア計, ミノムシクリップ導線, 抵抗, 炭素棒, ピンセット, シャーレ, ビーカー
- [薬品] 過マンガン酸カリウム $KMnO_4$ 水溶液,過酸化水素 H_2O_2 水,ヨウ化カリウムKI水溶液 硫酸鉄(II) $FeSO_4$ 水溶液,ビタミンC入りジュース,硫酸 H_2SO_4 , ヘキサシアノ鉄(II)酸カリウム $H_3Fe(CN)_6$ 水溶液

<方法>

(1) 酸化剤と還元剤の反応を調べる

- ① ラップをしたセルプレートの蓋をプリントに合うように置き、蓋の円に1滴ずつ酸化剤を滴下する。「酸化剤」の列にも酸化剤を滴下し、還元剤を加えていない状態の水溶液との比較に利用する。
- ② 過マンガン酸カリウムと過酸化水素水に硫酸を1滴ずつ加え、ガラス棒で混ぜる。違う溶液を扱う際は、ガラス棒を洗って用いる。
- ③ 還元剤をそれぞれの酸化剤に2滴ずつ滴下し、ガラス棒で混ぜ、反応を見る。結果を表に書く。 「還元剤」の行も酸化剤の列と同様に比較のために滴下する。
- ④ 硫酸鉄(Ⅱ)水溶液の列にヘキサシアノ鉄(Ⅱ)酸カリウム水溶液を1滴ずつ滴下し、変化を見る。
 ※ヘキサシアノ鉄(Ⅱ)酸カリウム水溶液は鉄(Ⅱ)イオンとは青白色沈殿、
 鉄(Ⅲ)イオンとは濃青色沈殿を生じる。
- (2) 電子の流れを確認する。(過マンガン酸カリウム水溶液,過酸化水素水, ヨウ化カリウム水溶液,ビタミンC入りジュース)
 - ① マイクロアンペア計と導線,抵抗,炭素棒を左図のようにつなぐ。
 - ② シャーレに丸いろ紙を置き、ろ紙全体が湿るように硫酸を垂らす。
 - ③ 小さいろ紙片に、それぞれの液の物質名もしくは化学式を鉛筆で書き、 もう一枚のろ紙上に置き、それぞれの液を1、2滴垂らす。
 - ④ ピンセットを用い4種類の溶液のろ紙の小片を、硫酸で湿らしたろ紙上に重ならないように置く。このとき、ビーカーに水を準備し、ピンセットをろ紙ごとに軽く洗う。

<結果および考察>

(1) 酸化剤と還元剤の反応を表に記入せよ。

CITY BATCH BEACH CONCINCTON						
	ヨウ化カリウム 水溶液	硫酸銅(Ⅱ) 水溶液	過酸化水素水	ビタミンC入り ジュース		
過マンガン酸カリウム 水溶液 + 硫酸 (+ K_3 F e $(CN)_6$ $aq)$	•	2 ()	3	4		
過酸化水素水 + 硫酸 (+ K ₃ Fe(CN) ₆ aq)	6	© ()		\bigcirc		

(2) 電流計の端子を記し、電子の流れる向きを記入せよ。

電流計の 端子	試料	電子の流れる 向き	試料	電流計の 端子
()	過マンガン酸カリウム水溶液		ヨウ化カリウム水溶液	()
()	過マンガン酸カリウム水溶液		過酸化水素水	()
()	ヨウ化カリウム水溶液		過酸化水素水	()
()	ビタミンC入りジュース		過酸化水素水	()

(3)	酸化剤と還元剤の反応①~⑦のイオン反応式をそれぞれ表せ。
1_	
2	
3 <u> </u>	
<u>4</u> _	
<u>5_</u>	
6	
7	
(4)	(2)の結果から電子の流れと酸化剤還元剤についてわかることは何か。

(5) (2)の結果からビタミンC人のジュースは酸化剤か還元剤か。そつ考えた埋由は何か。	
<わかったこと>	
<感想> 	

酸化剤の半反応式

過マンガン酸カリウム(硫酸酸性) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ 過酸化水素(硫酸酸性) $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$

還元剤の半反応式

過酸化水素 $H_2O_2 \to O_2 + 2H^+ + 2e^-$ ヨウ化カリウム $2I^- \to I_2 + 2e^-$ 硫酸鉄(II) $Fe^{2+} \to Fe^{3+} + e^-$ ビタミンC(アスコルビン酸) $C_6H_8O_6 \to C_6H_6O_6 + 2H^+ + 2e^-$

年 組 番 氏名